In 2002 researchers from the University of Vienna and the Medical University, together with the support of policy makers, agreed to establish a new research institute to foster competitive basic research in molecular biology. Since then the Max Perutz Labs has evolved to become an internationally respected research institution making an important contribution to mechanistic biomedicine.
To honour an extraordinary teacher and scientist, the Max Perutz Labs were named after Max Ferdinand Perutz, who, together with John C. Kendrew, was awarded the 1962 Nobel Prize in Chemistry for his studies on the structure of globular proteins ...
The Max Perutz Labs were founded in 2005 as a joint venture of the University of Vienna and the Medical University of Vienna.
The Max Perutz Labs are part of the Vienna BioCenter, one of Europe's hotspots for life sciences.
Research Groups and their relation to Research Areas
Mechanistic Cell and Developmental Biology
Chromatin, RNA and Chromosome Biology
Infection and Immunity
Structural and Computational Biology
Nutrient-regulated control of lysosome function by signaling lipid conversion
Shedding Light on the Dark Side of Terrestrial Ecosystems: Assessing Biogeochemical Processes in Soils
Protein homeostasis and lifelong cell maintenance
Dissecting the turgor sensing mechanisms in the blast fungus Magnaporthe oryzae
Pikobodies: What does it take to bioengineer NLR immune receptor-nanobody fusions
When all is lost? Measuring historical signals
Gene regulatory mechanisms governing human development, evolution and variation
Regulation of Cerebral Cortex Morphogenesis by Migrating Cells
Phage therapy for treating bacterial infections: a double-edged sword
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
SLiMs and SHelMs: Decoding how short linear and helical motifs direct PPP specificity to direct signaling
Title to be announced
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Engineered nanocarriers for imaging of small proteins by CryoEM
Bacterial cell envelope homeostasis at the (post)transcriptional level
Title to be announced
Hydrologic extremes alter mechanisms and pathways of carbon export from mountainous floodplain soils
Dissecting post-transcriptional gene expression regulation in humans and viruses
Polyploidy and rediploidisation in stressful times
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
Title to be announced
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced