The Max Perutz Labs are embedded in the Vienna BioCenter, providing access to outstanding core facilities shared by all members of the campus in addition to facilities unique to our institute.
With a strong molecular focus and a diversity of model organisms, we aim to bridge basic research with biomedicine.
To honour an extraordinary teacher and scientist, the Max Perutz Labs were named after Max Ferdinand Perutz, who, together with John C. Kendrew, was awarded the 1962 Nobel Prize in Chemistry for his studies on the structure of globular proteins ...
The Max Perutz Labs are an international research institution in which people from all over the world come together to conduct scientific research. The Perutz recognizes and respects diversity as an important asset in establishing an inclusive and productive work environment for all parties, may it be students, scientists or support staff. We are committed to a workplace that values diversity and internationality, where people from various backgrounds and perspectives feel welcome and are supported in a safe environment. Whether it be race, ethnicity, national origin, religion, social background, age, gender, sexual orientation or disability - we aim to establish a community in which everyone feels included and is treated fairly and respectfully. We believe that there is always room for improvement and that a statement is worth nothing without action, but we continuously strive to do better and encourage every individual to play an active role in creating this environment.
The Max Perutz Labs seek to educate students to think critically and analytically, challenge them to set ambitious goals, and instill in them both broad horizons and deep understanding. In doing so, we aspire to furnish them with the necessary knowledge and skills to push forward the frontiers of 21st century biomedical science.
Chromatin as a gatekeeper of chromosome replication
Mind matters. VBC mental health awareness
The multiple facets of Hop1 during meiotic prophase
Chromosomes as Mechanical Objects: from E.coli to Meiosis to Mammalian cells
Convergent evolution of CO2-fixing liquid-liquid phase separation
Viral envelope engineering for cell type specific delivery
New ways of leading: inclusive leadership and revising academic hierarchies
How an opportunistic human pathogen colonizes surfaces - From pathogen behavior to new drugs
Title to be announced
Decoding Molecular Plasticity in the Dark Proteome of the Nuclear Pore Complex
Probing the 3D genome architectural basis of neurodevelopment and aging in vivo
How to tango with four - the evolution of meiotic chromosome segregation after genome duplication
Multidimensional approach to decoding the mysteries of animal development
Membrane remodeling proteins at the junction between prokaryotes and eukaryotes
Connecting mitotic chromosomes to dynamic microtubules - insight from biochemical reconstitution
Neurodiversity in academia: strengths and challenges of neurodivergence
Gene expression dynamics during the awakening of the zygotic genome
When all is lost? Measuring historical signals
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
Title to be announced
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Bacterial cell envelope homeostasis at the (post)transcriptional level
Polyploidy and rediploidisation in stressful times
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced